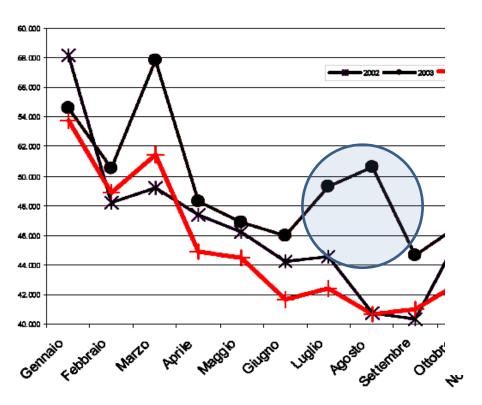
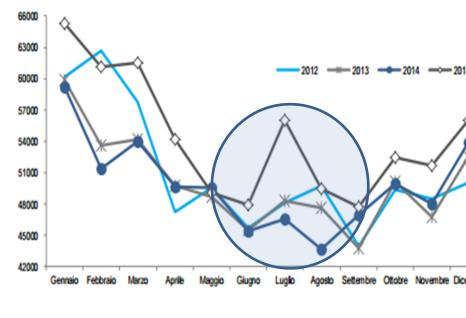
ATTIVITA' DI STUDIO PER L'IMPLEMENTAZIONE DELLO STRUMENTO "SUNFRAIL" Napoli, Mercoledì 30 Ottobre 2019 - ore 10:00-16.00

Interventi di comunità: l'esperienza di "Viva gli Anziani!"

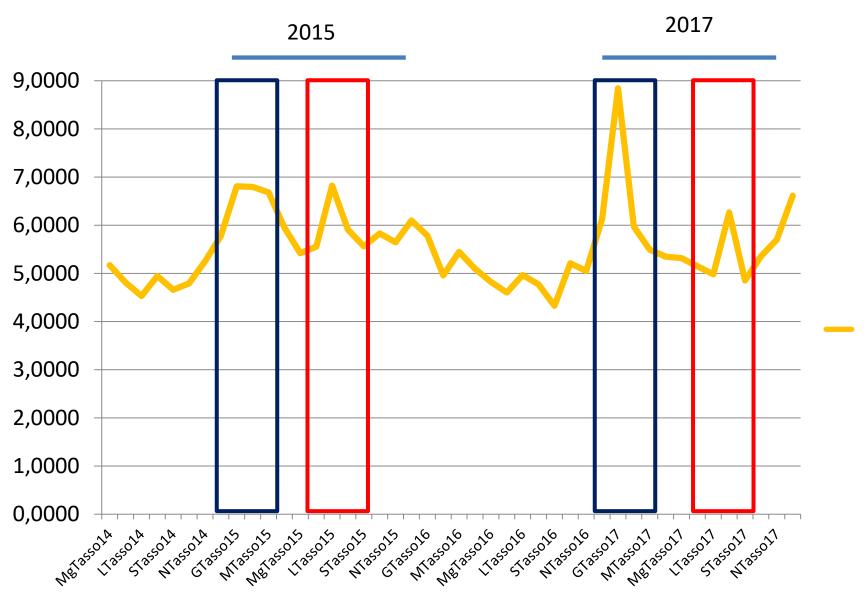

G Liotta¹. O Madaro^{2,4}. MC Inzerilli³. MC Marazzi⁵

- ¹ Biomedicine and Prevention Dept. University of Rome "Tor Vergata"
- ²"Long Live the Elderly!" program. Community of Sant'Egidio
- ³ Municipality of Rome
- ⁴ Local Health Unit Roma 3.Rome
- ⁵ LUMSA University. Rome



Mortality by month in Italy 2002-2004 and 2012-2016

Figura 2. Morti per mese. Anni 2002-2004



(*) 2012-2014 definitivi, 2015 dati provvisori gennaio-settembre e stime ottobre-dicembre

- The heat wave that hit Europe in the summer of 2003 caused more than 20,000 unexpected deaths
- In Italy, about 7,000 unexpected deaths were recorded, of which 92% were elderly living alone.
- In 2015 a similar phenomenon was observed despite attempts at prevention

Over-75 years old citizens' mortality (‰) in Rome by month (mid 2014-2017)

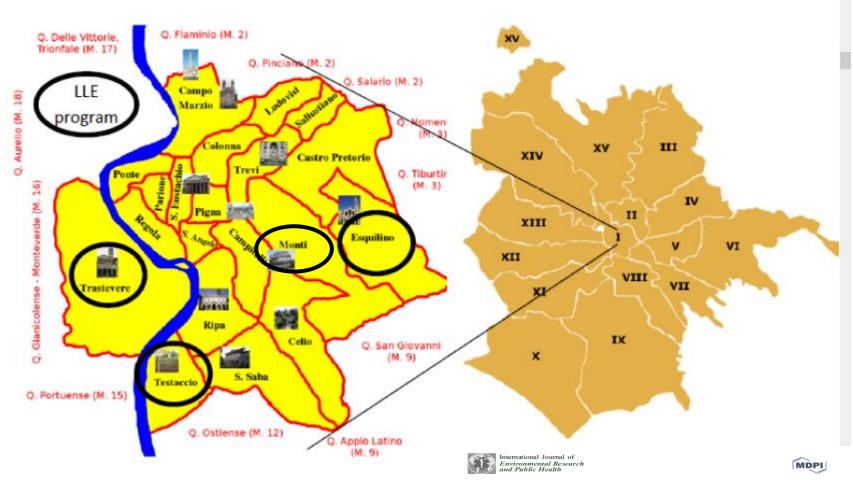
Data source: Statistical Office of the Municipality of Rome

Methods

- Study design: quasi-experimental retroprospective cohort study
 - Intervention group: over-75 years old citizens living in urban areas where the a Community-based Active Monitoring Program (CAMP) is operative
 - Control Groups: over-75 years old citizens living in urban areas where CAMP is NOT operative

Data Sources

- Standard mortality data flow provided by the municipality of Rome
- CAMP data base


Outcomes

Mortality from 1st June to 30th September 2017

Statistic analysis

 Parametric and non –parametric test to assess the differences between quantitative variables. Chi-Square test to assess qualitative variables. univariate and multivariate analysis to assess statistic inferences

Rome 1° administrative districts: the Urban Areas where the program is operative

Articl

Social Interventions to Prevent Heat-Related Mortality in the Older Adult in Rome, Italy: A Quasi-Experimental Study

The "Long Live the Elderly!" program

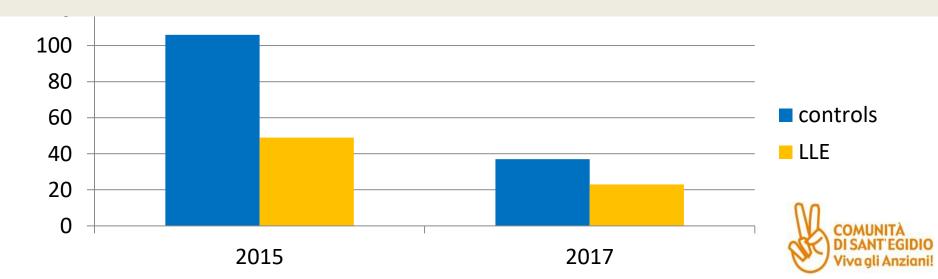
A Community-based pro-Active Monitoring Programme (CAMP). covering the whole year and "seeking" over 74-year olds in critical moments through:

- 1. Awareness campaigns
- 2. Phone calls
- 3. Home care visits
- 4. Social contact office

- To Prevent social isolation and its consequences among elderly people over 74 years of age
- To Detect individuals who are frail among this population
- To Establish a support network focused on frail individuals
- To help the elderly face critical events. such as heat waves. colds. falls

Summer mortality rate according to the intervention

GROUP	Population	2017 summer deaths	2017 summer mortality rate	CL 95%
Cases	6906	157	22.7‰	14-38‰
Control	4174	103	24.7‰	2 – 50‰
			Moses Test	<0.001


GROUP	Population	2015 summer deaths	2015 summer mortality rate	CL 95%
Cases	6483	167	25.7‰	23-29‰
Control	5724	169	29.6‰	17–43‰
			Moses Test	<0.001

% increase of 2017 summer mortality compared with 2016 (weighted by summer 2017 population per urban area)

GROUP	Population	% increase of summer mortality	CL 95%
Cases	6906	23.8%	11.0 – 36.6%
Control	4174	37.6%	18.4 – 56.8%
			Moses Test < 0.001

2016-2017 summer increase of mortality (comparison with 2014-2015 summer increase of mortality)

Impact of CAMP on 2017 summer mortality, adjusted for the share of over-90 population, and pre-summer mortality

Multivariable Linear Regression weighted for the 2017 population per urban areas

5.			Standar				
		ļ	dized				
	Non star	ndardized	coefficie				
	Coeff	Coefficient				95%9	% CL
	В	Std Error	Beta	t	Sign.	Lower	Upper
(Costante)	-37.836	1.363		-27.753	0.000	-40.508	-35.163
over-90 population (%)	-47.889	0.732	-0.558	-65.413	0.000	-49.324	-46.454
Intervention	-45.377	0.460	-0.945	-98.610	0.000	-46.279	-44.475
Pre summer mortality (Oct 2016-May 2017)	0.833	0.009	0.979	95.030	0.000	0.815	0.850

One-year hospital admissions: rates and determinants

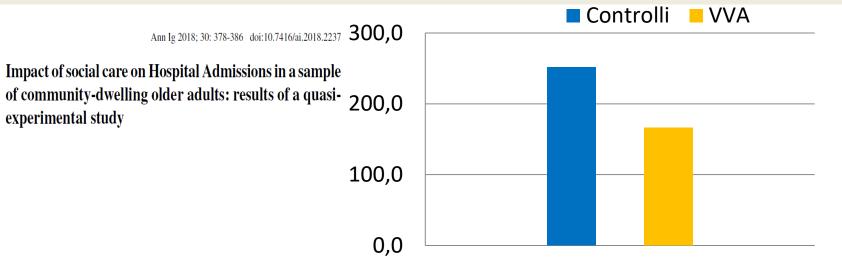
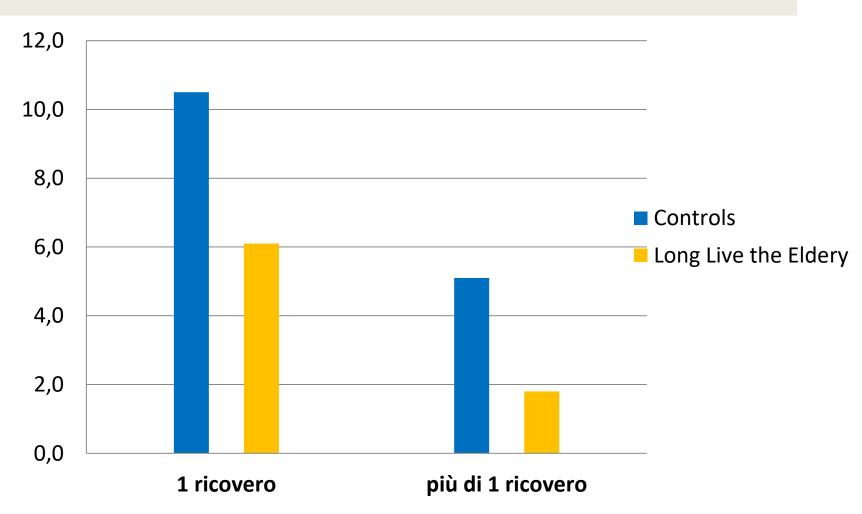
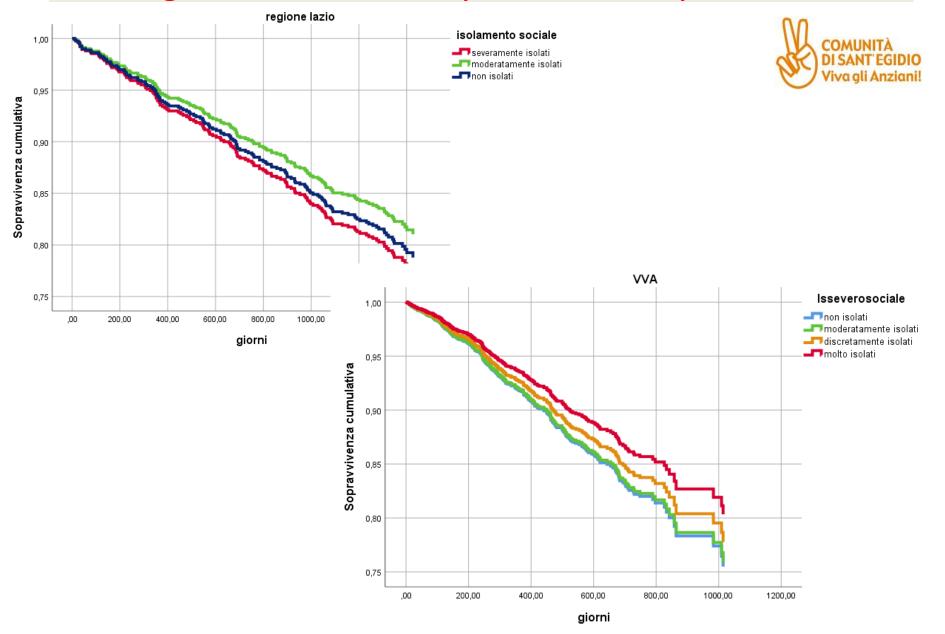



Table 5 - Multivariate Linear Regression. Dependent variable: hospital admission rate per 1000 observation/year


	Non Standardized Coefficent		Standardized Coefficent	Sign.	95.0% CL	
	В	Std Error.	Beta		Lower	Upper
Constant	-1.082	0.436		0.013	-1.938	-0.226
Interventiona	-0.108	0.043	-0.131	0.013	-0.192	-0.023
Age ^b	0.018	0.006	0.171	0.002	0.007	0.030
Gender ^c	0.008	0.038	0.011	0.830	-0.066	0.082
SFGE Score ^b	0.008	0.073	0.005	0.916	-0.136	0.152

One-year hospital admissions

Survival according to social isolation adjusted for age, gender, comorbidity and disability - 2018

Conclusion

- A social intervention program seems to be able to limit unexpected mortality of older adults living in urban areas during an heat wave
- The result is consistent across two heat waves in different years and across different populations
- It is likely that social isolation plays a major role in mediating the impact of extreme climate events on a population with high prevalence of frailty
- Considering the increase occurrences of extreme climate events in our country, an increased attention to the frail population, which suffers more than others from this events, should be implemented
- Hospital admission rates seems to be positively impacted by the same program
- Bio-Psycho-Social assessment of frailty seems to be much more effective to manage frailty than Psycho-Physical one